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Minimal Error Constant Numerical Differentiation 
(N.D.) Formulas 

By A. Pelios and R. W. Klopfenstein 

Abstract. In this paper, we consider a class of k-step linear multistep methods in the 
form (1.1) of numerical differentiation (N.D.) formulas. For each k, we have required the 
property of A-stability which implies at most second order for the associated operator. 
Among such second-order operators, the parameters of the formulas have been selected to 
minimize the error constant consistent with the A-stability property. 

It is shown that the error constant approaches that of the trapezoidal rule as k --* o 
and that significant reductions occur for quite modest k. Thus, these results have significance 
in practical applicationis. 

I. Introduction. Consider the N.D. formula 
k 

( 1 .1h) fn+= E amA7 Yn+1I 
m=i 

where V'yn+1 is the backward difference operator. Henrici [4], Gear [3], and others 
select am,k = 1/nm to obtain an operator of maximum order for a given number of back 
points. With this selection, (1.1) is of kth order with error constant 

(1.2) Ck= l/(k + 1). 

Such formulas are A-stable for k = 1, 2 and are stable on the negative real half- 
line for k = 1, 2, ,6. 

In this note, we propose to retain the A-stability property by limiting the order 
to two [1] and use the additional degrees of freedom (from am,k, m > 2) to obtain 
formulas of minimum error constant (for a given k) consistent with the A-stability 
property. This generalizes a result [5] previously obtained for the case k = 3. For 
every k < o, we must have 

(1.3) Ck > 1/12 = CT, 

where CT is the error constant associated with the trapezoidal rule [1]. We shall 
exhibit minimal formulas for every k such that C, -+ CT as k -. 

II. Stability Properties. To study the stability properties of (1.1), we apply it 
to the equation V' = vy and obtain 

k 

(2.1) qyn, = I E am,.VmYnt,, q = vh. 
mr- 

By forming the characteristic equation through the substitution yn+, = Xkf -'y, +1 k- 
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we obtain 

(2.2) qXk = Ej ankXk(l -X-l)" 
rn-I 

whence, 

(2.3) q E arnk, = 1 - X. 
rn-I 

By Dahlquist's Lemma 2.1 [1], the N.D. algorithm (1.1) is A-stable if and only if 
k 

(2.4) Re(q) = Re E a.kr - 0, 
m=1 

in the exterior of I XI = 1, i.e., in the interior of the circle I-Ij = 1. It is clear that 
it is necessary and sufficient for A-stability that (2.4) be satisfied on the circle I- 
- 1. 

III. Minimal N.D. Formulas. 
Definition 1. A N.D. formula (1.1) is a minimal N.D. formula for a given k, if 

it (a) is of second order, (b) is A-stable, and (c) has an error constant C, equal to 
the lower bound of such error constants. 

It is necessary and sufficient for a N.D. formula to be of second order that al,,- 
1, a2k = 2. Furthermore, the error constant Ck - - a3k. We therefore study poly- 
nomials of the form 

(3.1) f(X) = X + 2 + + X3,(X), 

where cD is zero or an arbitrary polynomial of degree k - 3. Now, we define a related 
polynomial 

2xf(l + x) I -x 
(3.2) gx)= (l + x)2 l+ x 

- (1 + x)(l + 3X(1 + x)), 

and propose to examine its properties on the unit circle [xl = 1. The following lemma 
validates this procedure. 

LEMMA 1. f(l + x) is a polynomial of degree N _ 2 with properties 

(3.3) Re f(l + et+) _ 0, -Xr < _o < 7, 

f(0) = 0, f'(O) = 1, f"(O) = 1, 

if and only if g(x) is a polynomial of degree N - 1 ? 1 with properties 

(3.4) Re g(e'o) > 0, -X < ? ?< X, 

g(-1) = 0, g(O)= 1. 

This follows from a direct consideration of the properties of f and g deduced 
from the definitions (3.1) and (3.2). As a corollary, we have that f"'(O) is maximized 
if and only if g'(- 1) = 1 - 14)(0) is minimized. 

We can state the following lemma valid for a general function of real type, analytic 
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within and on the unit circle. The proof is given in Appendix 1. By a function of real 
type, we mean a function that is real-valued for real arguments. 

LEMMA 2. If g(z) is a function of real type, analytic within and on the unit circle 
with the property g(-1) =0, then 

(a) g(o) = - f Re g(ei+) do, and 
(3.5) 

(b) g (-1) =1 Re g(e i') do 
grO1+ cos 

Now, we note that Re g(ei+) may be expressed as a polynomial in cos 4 and such 
polynomials satisfying g(- 1) = 0 are obtained through 

(3.6) Re(g(e")) = (1 + cos 4)Q, 

and equivalently 

Re(f(1 + ei')) = (1 + cos 0)2Q, 

where Q is a real polynomial in cos 4 nonnegative on -1 < cos 4 < 1. The problem 
of obtaining minimal N.D. formulas can now be expressed through the following 
constrained minimization problem: 

For a given k > 3, find the polynomial Q(cos 4) of degree k - 2 satisfying 

(3.7) (1 + cos O)Q(cos 4) do = 1, Q(cos 4) > 0, 
7r 

which minimizes f Q(cos 4) do. This is equivalent to the problem of maximizing the 
ratio 

w(x)xQ(x) dx 
(3.8) R 

w(x)Q(x) dx 

subject to Q(x) _ O, - 1 ? x < 1, with w(x) = 1/(I -X2)/2. Having obtained such 
a Q, an appropriate normalization can be obtained through (3.7) and the correspond- 
ing function f(x) through (3.6) and (3.2), thus leading to the minimal N.D. formulas 
sought. 

We now establish the following lemmas relating to the location of the zeros of 
Q(x): 

LEMMA 3. The zeros of a polynomial Q(x) of degree equal to or less than M which 
maximizes (3.8) are contained in the closed interval [-1. 1]. 

Proof. Suppose Q(x) to be factored into 

Q(x) =Q(X)Q1(X), 

Qo(x)>O - < x<, 

Q1(x) > 0, 

where Q)(x) has as zeros all of the zeros of Q(x) contained in [- 1, 1] and Q,(x) has 
as zeros the remnaining zeros of Q(x). Assume that 
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(3.9) Degree(Q0) < M, 

and that Q(x) maximizes the ratio R of (3.8). We now construct a perturbation' 
polynomial and show that the ratio R of (3.8) can be increased under this assumption, 
thus contradicting the assumption that Q maximizes (3.8). 

Consider 

(3.10) Q(E) Q + E(x -)a , 

where a is selected such that 

(3.11) f w(x)(x - a)Qo dx = 0, 

which is clearly possible from the fact that w > 0 and Qo _ 0. Furthermore, - < 

a ? 1. The degree of Q(E) is less than or equal to M since by assumption the degree 
of Q0 is less than M. 

We now show that there exists a nontrivial range for e which includes e = 0 and 
such that Q(E) satisfies the constraint Q(e) ? 0. For such E, we must have by (3.10) 
that 

(3.12) QI(x) + E(x -a) _ 0. 

Since, by assumption, Q, has no zeros in [- 1, 1], it has a minimum 

(3.13) Qmin Min (Ql(x)) > 0. 

It suffices for (3.12) to take 

(3.14) |El _ Qm]D/(1 + jai). 

The perturbed polynomial Q(E) leaves the denominator of R unchanged while the 
numerator becomes 

(3.15) N(E) = N(O) + E f w(x)x(x - a)Qo(x) dx, 
= N(0) + EI. 

Now I # 0, since I = 0, together with (3.11), implies that 

w(x)(x - a)2QO(x) dx = 0, 

which is clearly impossible for nontrivial Q0. Hence, e may be selected to increase 
N(E) and thus the ratio R as well. Q.E.D. 

COROLLARY 1. Q(x) has full degree equal to M. 
The proof of Corollary I is obtained in an exactly similar way to that for Lemma 3. 
LEMMA 4. The polynomial Q(x) which maximizes (3.8) does not have a zero at 

x = +1. 

Proof. If Q does have a zero at x = + 1, it can be written as 

(3.16) Q(x) = (1 - x)Qo(x), where Degree(Q0) = M - I < M. 

Defining the scalar product uii v for some weight w by 
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(3.17) u*v = f uvw dx, 

w(x) > 0 (almost everywhere), and defining a real function r(x) by 

(3.18) r2 Qo= ) 

which is clearly possible due to the nonnegative character of Qo, the ratio (3.8) can 
be expressed as 

(3.19) RI =.xr r - xr . xr 
r,r - xr-r 

where here w is as in (3.8). We shall now show that R1 < R-1, where R-1 corresponds to 

(3.20) Q(x) (1 + x)Qo(x), 

which is also an admissible Q with 

(3.21) = xr r + xr xr 
rr + xr-r 

Now, the proposition R1 < R1 is implied by the proposition 

(3.22) (xr * r)2 < (xr * xr)(r * r), 

which is Schwarz's inequality [7, pp. 381-382]. The inequality is strict since xr and 
r are linearly independent. Q.E.D. 

Lemmas 3 and 4 taken together characterize Q as a real polynomial, nonnegative 
in [-1, 1], and with all of its zeros in [-1, 1). This implies that for odd degree, equal 
to 21 + 1, Q can be expressed as 

(3.23) Q(x) (1 + x)qa, 

and for even degree, equal to 21, as 
2 

(3.24) Q(x)= =l, 

where q, is a polynomial of degree I with zeros in [- 1, 1). 
The following discussion relates to both the even and odd degree cases and will 

be made specific in this regard later. Through the definitions of (3.23) and (3.24) and 
an appropriate choice of a weight function the optimization problem (3.8) is equivalent 
to an unconstrained maximization of the form 

(3.25) R = xq1*q1 
ql * q, 

with respect to polynomials q1 of degree equal to or less than 1. To this end, we define 
an orthogonal set of polynomials by the three-term recursion [2], [6, pp. 42-44] 

(3.26) P, = (x - a.)P1 - b.P.-1, n > 1, 

with 

P, = PI = x - 

and the a,,, bn defined through 
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x Pn -P an Pn Pn Pn Pn = bnPn-,,1*Pn- 

Now, we define a linear operator T on the space E of all polynomials of degree 
equal to or less than I with the inner product of (3.17) by 

(3.27) Tu = the projection of xu on E. 

Now, let X be a (real) root of P,+1, and u given by 

(3.28) u = P1?,/(x - X) C E. 

Then, 

Tu = Proj( XPI'I), 

= Prco j( + I )Pi 1 (3.29) - o A 

= Xu + Proj(P1+1), 

= Au. 

Thus, the eigenvalues X,: of T are the zeros of P1?1, and q I may be expanded in terms 
of the corresponding eigenvectors uk to give 

1: Xkak IIUkfI 12 
(3.30) R = ba I|Ukil 

which is clearly maximized by taking 

(3.31) q, = P1a+1/(x -mac) 

where XmN,1 is the largest eigenvalue of T (zero of P,+1). The theory of orthogonal 
polynomials guarantees that this choice is unique [6, pp. 44-47]. 

This discussion can be made specific to the odd (even) degree cases of (3.23) 
and (3.24) by taking 

(3.32) w(x) = I _ x (odd), or w(x) =(even) ir(l - X2)112 (l-X2)112 ee) 

The corresponding orthogonal polynomials are Jacobi polynomials [6, p. 3] 

Sn(cos q5) = cos(n +2 (odd), or 
(3.33) cos(4k) 

T,,(cos k) = cos(nq) (even). 

In both cases, these lead to the polynomial Q given by 

(3.34) Q(cos c) = ( +2 cos(k) (cos 4 - cos(ir/k)) 

within a positive multiplicative factor. 
By (3.6), 

(3.35) Re f(1 + e ) = a cos ? - cos(r/k)_ (I + cos(k%)), a > 0. 
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Now, specification of the real part of an analytic function of real type on a circle 
specifies the function [7, p. 124]. We can construct this function by using the sub- 
stitution cos c = z + 1/z in the first factor of (3.35) and writing 

(3.36) f(l + z) = a( 
2 _ 2 cos(r/k)z + 1)- Z2 _ 2 cos(ir/k)z + I 

where the contribution of the second term is purely imaginary on the unit circle 
and ,B may be selected to remove the two simple poles of the first term. When this is 
done and a is selected by the requirement f'(O) = 1, we obtain 

f(1 + z) = (I + cos(r/k)) 1 
I 

2 cos(ir/k)z + 2 

(3.37) -2co(kz 

1 - cos(ir/k) (1 + Z)4(1 + Zk) 

+ k (1 - 2 cos(r/k)z + Z2)2 k ' 
2, 

which is a polynomial of degree k in z which holds for k > 2, even though the pre- 
ceding development was carried out for k ? 3. 

We now have sufficient information to state the following: 
THEOREM. The minimal N.D. formulas of Definition I are specified by the kth 

degree polynomials (3.37) for k ? 2. These polynomials exhibit directly the coefficients 
am,k through the substitution z = - 1 and comparison with (2.3). The error constant 
of the minimal N.D. formulas is given by 

(3.38) Ck = 61 + cos(/k)] ' k ? 2. 

IV. Discussion. In Table 1, we show the coefficients of some minimal N.D. 
formulas together with their associated error constants. It is seen that significant 
reductions in the error constant are obtained by taking k greater than two. In particu- 
lar, taking k equal to 3, results in a reduction of the error constant by a factor of two 
while requiring no additional storage if a second-order extrapolative predictor is 
used in conjunction with (1.1). 

TABLE 1 

Minimal N.D. Formulas and Associated Error Constants 

k 12Ck a3k a4k a5k 

2 4 0 0 0 
3 2 -60 0 
4 1.5148... (/2 - 1) 8(2 - /2) 0 

5 1.3167 c 2c-1 l-c) 
2(1 + c) 4(1 + C) 

Note: alk = 1 and a2k = 2for all k > 2. c = cos (7r/5). 
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FIGURE 1. Regions of Stability for Minimal N.D. Formnulas 

The boundary for the stable regions of the algorithms tabulated in Table 1 are 
displayed in Fig. 1. As k -? o, the error constant approaches that of the trapezoidal 
rule from above with 

(4.1) Ck 1 + 

and the boundary of the stable region approaches the imaginary axis from the right. 

Appendix 1. Proof of Lemma 2. Part (a) of Lemma 2 follows directly from an 
application of Cauchy's integral formula 

(All) g(O) = i g() d?, 2ri 

specialized to the unit circle, = ei, as an integration path leading to 

1 2r 
(A1.2) g(O) = j et') do, 

whence, 

(A1.3) g(O) = - f Re g(ei') d+. 

To establish part (b) of Lemma 2, we consider the function 

=g() 
- g'(- )( + O) 
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and note that h(r) is analytic within and on the unit circle by assumption on the 
properties of g(&) and since the numerator of h(v) has a double zero at v = -1. 

Cauchy's integral theorem states that 

(A1.5) f h(?) dt = , 

which when specialized to the unit circle, - e= , leads to 
2 Re g(e ')- g'(- 1)(1 + cos 4) 

(Al.6) Jf) 2(1 + cos 4) d) 

+ if -4((Im g(e) - '(- c) sin = . 
2(1 +F cos 4)) 

Since g(z) is of real type, g(z) - g(z) and the second term of(Al.6) vanishes, so that 
(Al.6) may be written as 

(A1.7) g,(-1 ) Re7 g(e 
dos, 

which is equivalent to part (b) of Lemma 2. 
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